From StrongArm™ to PWRficient™: The Battle to Reduce Power in Microprocessors

Dan Dobberpuhl
President and CEO, P.A. Semi, Inc.
The Escalating Power Problem

- Shrinking device geometries provides:
 - Faster gates
 - Increased density

BUT

- Moore’s Law means more power

EXCESSIVE POWER DISSIPATION LIMITS USABLE GATE CAPACITY
Operating Costs of High-End Servers

- Total cost = acquisition cost + operating cost*

- Over a five-year period, operating costs exceed acquisition costs
 - Operating costs dominated by the cost of power and air-conditioning

POWER-EFFICIENT PROCESSORS CAN LEAD TO SIGNIFICANT OPERATING-COST SAVINGS FOR DATA CENTERS

*See P.A. Semi white paper PWRficient-Based Supercomputing
Power Constraints for Consumer Applications

- Multiple functions are converging in consumer appliances
 - e.g., home gateway/media center/NAS
 - Increased performance demands

- Consumer applications favor fanless, low-power operation
 - Conventional TDP-limited solutions compromise performance

CONSUMER APPLICATIONS REQUIRE INCREASING PROCESSOR PERFORMANCE WITHIN SEVERE POWER LIMITS
System Power

- Power is a system problem
 - Power reduction needs to go beyond CPU

- Major components of system power other than the processor
 - Memory power
 - Power in other external components
 - Chip-to-chip interconnect power
 - Power supply losses

ALL MAJOR COMPONENTS OF SYSTEM POWER MUST BE REDUCED FOR BEST OVERALL POWER EFFICIENCY
Understanding Power Basics
CMOS Power Basics

Switching Power
\[P = N_{\text{switch}} \times F \times C \times V_{dd}^2 \]

Short Circuit Power
\[P = N_{\text{switch}} \times F \times V_{dd} \times I_{sc} \]

Leakage Power
\[P = N \times I_{\text{leak}} \times V_{dd} \]

\[I_{sc} \propto V_{dd}, I_{\text{leak}} \propto V_{dd}, N_{\text{switch}} = \psi \times N \]

\[P = V_{dd}^2 \times N \times [\psi \times F \times (C + \varepsilon_{sc}) + \gamma_{\text{leak}}] \]

- \(V_{dd} \): PS voltage
- \(N \): Total number of gates
- \(\psi \): Fraction of gates switching per clock cycle
- \(F \): Clock frequency
- \(C \): Average capacitative loading of a single gate
- \(\varepsilon_{sc} \): Short circuit factor of average gate
- \(\gamma_{\text{leak}} \): Leakage factor of average gate
A Few More Basics

Gate Delay $\alpha \frac{\lambda}{(V_{dd} - V_t)}$

so

$F_{max} \propto \frac{(V_{dd} - V_t)}{\lambda}$

and

$\gamma_{leak} \propto e^{-V_t}$

$N \propto \frac{1}{\lambda^2}$

$C \propto \lambda$

$\varepsilon_{sc} \propto \lambda$

where

λ Minimum feature size

F_{max} Maximum clock frequency

N Total number of gates

C Average capacitative loading of a single gate

V_t Transistor threshold voltage
From StrongARM to PWRficient
StrongARM Raised the Power-Efficiency Bar

- **Low-power design**
 - Built on the high-performance design methodology developed for Alpha™

- **50x performance/Watt improvement over Alpha**
 - Integer performance nearly equivalent to original 21064 Alpha
 - 0.5W power dissipation (StrongARM) compared with 26W (Alpha)
StrongARM Features

- **Functionality:**
 - 160MHz integer core
 - Including a 32b MAC unit
 - Simple 5 stage pipeline
 - 16KB L1 I + D Caches
 - External address and data bus
 - Idle and sleep modes

- **Technology:**
 - 0.35um CMOS
 - 1.65V V_{dd}
 - 0.35V V_t
 - 250K logic transistors

- **Power:**
 - 0.5W @ 160MHz

- **Performance:**
 - 185 Dhrystone MIPS
StrongARM’s improved power efficiency was achieved by the following first-order design and technology scaling

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Ratio</th>
<th>Power Factor</th>
<th>Cumulative Improvement</th>
<th>Power 26W</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{dd}</td>
<td>3.45/1.5</td>
<td>5.3</td>
<td>5.3</td>
<td>4.9W</td>
</tr>
<tr>
<td>N</td>
<td>750K/250K</td>
<td>3</td>
<td>16.9</td>
<td>1.6W</td>
</tr>
<tr>
<td>λ</td>
<td>0.75/0.35</td>
<td>2</td>
<td>33.8</td>
<td>0.8W</td>
</tr>
<tr>
<td>ψ</td>
<td>1.3</td>
<td>1.3</td>
<td>44</td>
<td>0.6W</td>
</tr>
<tr>
<td>F</td>
<td>200/160</td>
<td>1.25</td>
<td>55</td>
<td>0.5W</td>
</tr>
</tbody>
</table>
PWRficient PA6T Core

- **Functionality:**
 - 2.0GHz 64-bit core with FP and VMX
 - Super-scalar, out-of-order design
 - Quad-fetch, triple issue
 - 64KB L1 I + D Caches
 - Interface to on-chip coherent bus
 - Idle and sleep modes

- **Technology**
 - 65nm CMOS
 - 0.6–1.2V V_{dd}
 - 0.3V V_t
 - 11M logic transistors

- **Power**
 - 7W @ 2.0GHz

- **Performance**
 - SPECint®2000 >1000 per core
 - SPECfp®2000 >2000 per core
Exceptional performance-per-Watt

- PWRficient vs. dual 970 with discrete system controller, southbridge
 - Better integration
 - Lower latency
 - Application offloads
 - 5–10x power advantage

- PWRficient vs. Freescale 8641D
 - 64-bit vs. 32-bit
 - 2–4x performance advantage
 - 10GbE vs. GbE
 - More application offloads
 - > 3x power advantage

- PWRficient vs. Intel Yonah
 - Better integration
 - Lower latency
 - 3–5x power advantage
Comparing StrongARM and PWRficient

- Same basic design philosophy — balance power and performance

- Cores have a lot in common, despite their disparity in complexity
 - 250K vs. 11M transistors
 - Separated by 5 generations of technology
 \[2^5 \times 250K = 8M \]
 - Comparable footprint \(~10mm^2\) (not including L1 caches)
 - Excellent performance/Watt compared to competition
 - Very good absolute performance relative to much higher power competitors
From StrongARM to PWRficient

- Assume the PWRficient core is scaled from the StrongARM core
 - Using the same design techniques
 - Ignoring the significant increase in leakage current with technology scaling

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Ratio</th>
<th>Power Factor</th>
<th>Cumulative Improvement</th>
<th>Power 0.5W</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{dd}</td>
<td>1.5/1.1</td>
<td>1.86</td>
<td>1.86</td>
<td>0.27W</td>
</tr>
<tr>
<td>N</td>
<td>250/11,000</td>
<td>0.023</td>
<td>0.042</td>
<td>11.83W</td>
</tr>
<tr>
<td>λ</td>
<td>0.35/0.065</td>
<td>5.4</td>
<td>0.23</td>
<td>2.2W</td>
</tr>
<tr>
<td>ψ</td>
<td>1.0</td>
<td>1.0</td>
<td>0.23</td>
<td>2.2W</td>
</tr>
<tr>
<td>N</td>
<td>160/2,000</td>
<td>0.08</td>
<td>0.0316</td>
<td>27.5W</td>
</tr>
</tbody>
</table>

- The analysis predicts that the new core should dissipate 27.5W
- Adding in the leakage factor adds another 5.5W, bringing the total expected power up to 33W!
The Factor of Four

How did PA Semi achieve a > 4× improvement in power efficiency over the StrongARM design?

We utilized two major techniques

- **Device-Specific V_{dd} — 2× improvement factor**
 - Although the nominal V_{dd} for the 65nm process is 1.1V, the design allows for a V_{dd} that is specific to the device and conditions
 - To get the largest dynamic range possible, the caches are operated on a separate power supply

- **Ultra-fine-grained conditional clocking — 2× improvement factor**
 - The PA6T core takes clock gating to another level
 - Approximately 15K individually gated clocks for dual-core processor
Benefit of Device-Specific V_{dd}

- Fast parts tend to be very leaky

- Conventional approach
 - Operate at 1.1V across entire process range

- P.A. Semi approach
 - Operate at optimal device-specific V_{dd}
 - Partition power plane for optimal voltage selection per region

- Enables full process range for power yield
Ultra-Fine-Grained Clock Gating

% of Flops Clocked

Reset and flop initialization
Normal Operation
Thermal virus

Time
What Next?

► Pure scaling of the StrongARM design would have resulted in a power increase of > 50× due to basic physics

► P.A. Semi added two new techniques to those used in the original StrongARM and was able to improve on scaling by a factor of 4×, resulting in an increase of “only” 14× in power dissipation

CAN DESIGN ENGINEERS CONTINUE TO INNOVATE AT THE CIRCUIT LEVEL AND STEM THE SCALING TYRANNY OF NUMBERS?
Frequency is a dirty word with respect to power; recall

\[P = V_{dd}^2 \times N \times [\psi \times F \times (C + \varepsilon_{sc}) + \gamma_{leak}] \]

and \(F_{\text{max}} \propto (V_{dd} - V_t) / \lambda \)

so if \(V_{dd} = f(F_{\text{max}}) \), then \(P_{F_{\text{max}}} \propto F_{\text{max}}^3 \)

Note that performance is \(\alpha F_{\text{max}} \), but

\[
\begin{array}{c|c|c}
\text{Performance} & \alpha & \frac{1}{F_{\text{max}}^2} \\
\hline
\text{Power} & & \\
\end{array}
\]
Parallel Processing

- Performance, Power and... Parallelism
- To a first order, if we take a computational task and
 - split it into two halves
 - operate each half at half the original frequency
 then we have improved the performance/power ratio by a factor of

\[P_2 = \frac{F_{\text{max}}^3}{2 \times (F_{\text{max}}/2)^3} = 2^2 \]

- In general the parallelism improvement factor is

\[P_N = N^2 \]

- This looks great, have we found the solution to our power problem?
The Problems with Parallelism

Three major limits to parallelism

- Decomposition is not always possible, especially at higher levels of N
- There is overhead required to recompose the solution
- There are limits to the amount of scaling that can be applied to V_{dd} without hitting functionality limit

Still, parallelism is an important method

- Will continue to be a major theme of future chip developments
Memory

- **On-chip memories are power efficient**
 - RAM structures have low power density due to low inherent utilization
 - Only a few of many bit cells accessed per cycle
 - On-chip RAMs save power by avoiding chip-to-chip bus structures

- **Most on-chip memory is devoted to caches**
 - Caches have diminishing (logarithmic) performance return vs. size
Summarizing Trends

- Frequency scaling will slow down or stop
- Ultra-low voltage operation will be pursued
- Various types of parallelism will be exploited
 - Multi-core
 - Parallel vector engines, array processing in general
 - Whatever other parallelisms architects can think up and software can utilize
- More die area devoted to RAM-like structures
What’s Next for P.A. Semi

- Extend techniques further
 - Extend to even lower voltage operation
 - Add more power-saving modes

- Core evolution
 - Other performance/power points
 - Evolving with Power Architecture

- Parallelism roadmap
 - Quad core and beyond
 - VMX roadmap
 - Scaling L2 cache size, number
Contact P.A. Semi

▸ For further information, please visit P.A. Semi web site at:

www.pasemi.com

▸ Kindly direct sales inquiries to:

pasales@pasemi.com

▸ Full contact information:

P.A. Semi, Inc.
3965 Freedom Circle, Floor 8
Santa Clara
CA 95054-1203 USA
Main: 408.200.4500
Fax: 408.200.4501
Thank You

The P.A. Semi name and the P.A. Semi logo and combinations thereof are trademarks of P.A. Semi, Inc. The Power name is a trademark of International Business Machines Corporation, used under license therefrom. SPECint and SPECfp are registered trademarks of the Standard Performance Evaluation Corporation (SPEC). All other trademarks are the property of their respective owners.